Some Applications of Optimization in Matrix Theory

نویسندگان

  • Henry Wolkowicz
  • Richard A. Brualdi
  • HENRY WOLKOWICZ
چکیده

We apply a recent characterization of optimality for the abstract convex program with a cone constraint to three matrix theory problems: (1) a generalization of Farkas’s lemma; (2) paired duality in linear programming over cones; (3) a constrained matrix best approximation problem. In particular, these results are not restricted to polyhedral or closed cones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION

The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...

متن کامل

Application of measures of noncompactness to infinite system of linear equations in sequence spaces

G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.  

متن کامل

A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT

The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...

متن کامل

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

Control Theory and Economic Policy Optimization: The Origin, Achievements and the Fading Optimism from a Historical Standpoint

Economists were interested in economic stabilization policies as early as the 1930’s but the formal applications of stability theory from the classical control theory to economic analysis appeared in the early 1950’s when a number of control engineers actively collaborated with economists on economic stability and feedback mechanisms. The theory of optimal control resulting from the contributio...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1981